awswrangler.s3.to_excel¶
- awswrangler.s3.to_excel(df: DataFrame, path: str, boto3_session: Session | None = None, s3_additional_kwargs: dict[str, Any] | None = None, use_threads: bool | int = True, **pandas_kwargs: Any) str ¶
Write EXCEL file on Amazon S3.
Note
This function accepts any Pandas’s read_excel() argument. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html
Note
Depending on the file extension (‘xlsx’, ‘xls’, ‘odf’…), an additional library might have to be installed first.
Note
In case of use_threads=True the number of threads that will be spawned will be gotten from os.cpu_count().
- Parameters:
df (
DataFrame
) – Pandas DataFrame https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.htmlpath (
str
) – Amazon S3 path (e.g. s3://bucket/filename.xlsx).boto3_session (
Session
|None
) – Boto3 Session. The default boto3 Session will be used if boto3_session receive None.pyarrow_additional_kwargs – Forwarded to botocore requests. e.g. s3_additional_kwargs={‘ServerSideEncryption’: ‘aws:kms’, ‘SSEKMSKeyId’: ‘YOUR_KMS_KEY_ARN’}
use_threads (
bool
|int
) – True to enable concurrent requests, False to disable multiple threads. If enabled os.cpu_count() will be used as the max number of threads. If integer is provided, specified number is used.pandas_kwargs (
Any
) – KEYWORD arguments forwarded to pandas.DataFrame.to_excel(). You can NOT pass pandas_kwargs explicit, just add valid Pandas arguments in the function call and awswrangler will accept it. e.g. wr.s3.to_excel(df, path, na_rep=””, index=False) https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html
- Return type:
str
- Returns:
Written S3 path.
Examples
Writing EXCEL file
>>> import awswrangler as wr >>> import pandas as pd >>> wr.s3.to_excel(df, 's3://bucket/filename.xlsx')