awswrangler.catalog.tables¶
- awswrangler.catalog.tables(limit: int = 100, catalog_id: str | None = None, database: str | None = None, search_text: str | None = None, name_contains: str | None = None, name_prefix: str | None = None, name_suffix: str | None = None, boto3_session: Session | None = None) DataFrame ¶
Get a DataFrame with tables filtered by a search term, prefix, suffix.
Note
This function has arguments which can be configured globally through wr.config or environment variables:
catalog_id
database
Check out the Global Configurations Tutorial for details.
- Parameters:
limit (
int
) – Max number of tables to be returned.catalog_id (
str
|None
) – The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS account ID is used by default.database (
str
|None
) – Database name.search_text (
str
|None
) – Select only tables with the given string in table’s properties.name_contains (
str
|None
) – Select by a specific string on table namename_prefix (
str
|None
) – Select by a specific prefix on table namename_suffix (
str
|None
) – Select by a specific suffix on table nameboto3_session (
Session
|None
) – The default boto3 session will be used if boto3_session receiveNone
.
- Return type:
DataFrame
- Returns:
Pandas DataFrame filled by formatted table information.
Examples
>>> import awswrangler as wr >>> df_tables = wr.catalog.tables()