awswrangler.sqlserver.to_sql(df: DataFrame, con: pyodbc.Connection, table: str, schema: str, mode: str = 'append', index: bool = False, dtype: Optional[Dict[str, str]] = None, varchar_lengths: Optional[Dict[str, int]] = None, use_column_names: bool = False, chunksize: int = 200) Any

Write records stored in a DataFrame into Microsoft SQL Server.


This function has arguments which can be configured globally through wr.config or environment variables:

  • chunksize

Check out the Global Configurations Tutorial for details.

  • df (pandas.DataFrame) – Pandas DataFrame

  • con (pyodbc.Connection) – Use pyodbc.connect() to use credentials directly or wr.sqlserver.connect() to fetch it from the Glue Catalog.

  • table (str) – Table name

  • schema (str) – Schema name

  • mode (str) – Append or overwrite.

  • index (bool) – True to store the DataFrame index as a column in the table, otherwise False to ignore it.

  • dtype (Dict[str, str], optional) – Dictionary of columns names and Microsoft SQL Server types to be casted. Useful when you have columns with undetermined or mixed data types. (e.g. {‘col name’: ‘TEXT’, ‘col2 name’: ‘FLOAT’})

  • varchar_lengths (Dict[str, int], optional) – Dict of VARCHAR length by columns. (e.g. {“col1”: 10, “col5”: 200}).

  • use_column_names (bool) – If set to True, will use the column names of the DataFrame for generating the INSERT SQL Query. E.g. If the DataFrame has two columns col1 and col3 and use_column_names is True, data will only be inserted into the database columns col1 and col3.

  • chunksize (int) – Number of rows which are inserted with each SQL query. Defaults to inserting 200 rows per query.



Return type



Writing to Microsoft SQL Server using a Glue Catalog Connections

>>> import awswrangler as wr
>>> con = wr.sqlserver.connect(connection="MY_GLUE_CONNECTION", odbc_driver_version=17)
>>> wr.sqlserver.to_sql(
...     df=df,
...     table="table",
...     schema="dbo",
...     con=con
... )
>>> con.close()