awswrangler.neptune.to_rdf_graph¶
- awswrangler.neptune.to_rdf_graph(client: NeptuneClient, df: DataFrame, batch_size: int = 50, subject_column: str = 's', predicate_column: str = 'p', object_column: str = 'o', graph_column: str = 'g') bool ¶
Write records stored in a DataFrame into Amazon Neptune.
The DataFrame must consist of triples with column names for the subject, predicate, and object specified. If you want to add data into a named graph then you will also need the graph column.
- Parameters
(NeptuneClient) (client) – instance of the neptune client to use
(pandas.DataFrame) (df) – Pandas DataFrame https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
(str (graph_column) – The column name in the dataframe for the subject. Defaults to ‘s’
optional) – The column name in the dataframe for the subject. Defaults to ‘s’
(str – The column name in the dataframe for the predicate. Defaults to ‘p’
optional) – The column name in the dataframe for the predicate. Defaults to ‘p’
(str – The column name in the dataframe for the object. Defaults to ‘o’
optional) – The column name in the dataframe for the object. Defaults to ‘o’
(str – The column name in the dataframe for the graph if sending across quads. Defaults to ‘g’
optional) – The column name in the dataframe for the graph if sending across quads. Defaults to ‘g’
- Returns
True if records were written
- Return type
bool
Examples
Writing to Amazon Neptune
>>> import awswrangler as wr >>> client = wr.neptune.connect(neptune_endpoint, neptune_port, iam_enabled=False) >>> wr.neptune.gremlin.to_rdf_graph( ... df=df ... )